HW: # 12a: Math IBSL - Standard 12 - Quadratic Formula and the Discriminant

5 points

1. For each equation find the value(s) of k such that the equation has two distinct real roots.

a
$$x^2 + 3x + k = 0$$

 b^2 - $400 > 0$
 3^2 - 400×0
 9 - 400×0
 -400×0
 100×0

b
$$kx^{2} + 20x + 5 = 0$$

 $b^{2} - 490 > 0$
 $20^{2} - 48(5) > 0$
 $400 - 208 > 0$
 $-208 > -400$
 $(8 < 20)$

2. For each equation, find the value(s) of **p** such that the equation has two equal real roots.

a
$$x^{2} + 5x + p = 0$$

 $b^{2} + 90 = 0$
 $25 - 4(1) = 0$
 $-4P = -25$
 $P = 25$
 4

d
$$x^{2} - 3px - 2p = 0$$

 $b^{2} + 4ac = 0$
 $(-3p)^{2} - 4(1)(-2p) = 0$
 $9p^{2} + 8p = 0$
 $p(9p+8) = 0$
 $p = -8$

3. For each equation, find the value(s) of *m* such that the equation has no real roots.

a
$$x^{2} - 2x + m = 0$$

b- $4ac < 0$
 $4 - 4b(m) < 0$
 $4 - 4m < 0$
 $-4m < -4$
 $m > 1$

b
$$3mx^2 - 6x + 1 = 0$$

 $6^2 - 49(20)$
 $36 - 4(3m)(1) < 0$
 $36 - 12m < 0$
 $-12m < -36$
 $m > 3$

